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Introduction

Neuronal activity generates electric currents that can be 
measured by various methods to study brain function. 
These methods (Box 1) include invasive intracortical elec-
trode recordings, as well as noninvasive techniques such as 
electroencephalography and magnetoencephalography 
(MEG). Electroencephalography and MEG use sensors 
placed on or near the scalp to measure neural field activity, 
which reflects the aggregate postsynaptic electrical activity 
from large populations of neurons. This neural field activity 
comprises a combination of aperiodic (nonoscillatory) 
components and periodic (rhythmic) activity across multi-
ple frequency bands, as illustrated in Figure 1a. Particular 
frequency bands have been associated with many cognitive, 
sensory, and motor processes, with examples including suc-
cessful memory retrieval with theta band activity (4 to 8 Hz; 
Herweg et  al 2020), attentional mechanisms with alpha 
band activity (8 to 13 Hz; Foxe and Snyder 2011), senso-
rimotor functions with beta band activity (13 to 30 Hz; 
Kilavik et  al 2013), and perceptual binding with gamma 
band activity (>30 Hz; Csibra et al 2000).

Traditionally, the analysis of periodic neural activity 
has relied heavily on signal processing techniques such as 
the Fourier and Hilbert transforms. These methods 

assume that neural activity is sinusoidal and stationary 
(Donoghue et  al 2022) and therefore characterize it as 
consistently oscillatory or rhythmic. However, recent 
empirical evidence challenges this conventional view, 
demonstrating that activity in various frequency bands 
often manifests as discrete transient events, or “bursts,” 
rather than sustained oscillations (Figure 1b; Jones 2016; 
Quinn et al 2019; Tal et al 2020). Consequently, standard 
trial-averaged analyses, which measure mean power 
within frequency bands, may obscure the dynamic burst-
like activity in individual trials (Figure 1c and 1d).

Notably, neural activity in the beta band appears to 
occur predominantly as transient bursts rather than 
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Box 1.  Electrophysiologic methods for measuring neural activity.

Extracellular recordings. Extracellular recordings involve inserting electrodes directly into brain tissue to detect the electrical 
activity of neurons. These electrodes can measure 2 main types of signals: 1) action potentials, or “spikes,” from individual 
or small groups of neurons, typically in the kilohertz range, and 2) local field potentials (LFPs), which reflect lower-frequency 
(<200 Hz) synaptic activity integrated over a local population. Spikes offer precise information about individual neuron firing, 
while LFPs capture population-level activity, including oscillations and bursts (Buzsáki et al 2012). Extracellular recordings are 
uniquely well suited to study the fine spatial and temporal dynamics of beta burst generation, including their relationship to 
spiking activity and their laminar-specific origins. Although highly informative, these methods are invasive and therefore limited 
to animal studies or rare human clinical cases.

Electroencephalography. Electroencephalography (EEG) measures electrical potentials at the scalp surface that arise from 
synchronized cortical activity (Cohen 2017). It is widely used due to its excellent temporal resolution, affordability, and 
accessibility, particularly in clinical and developmental research. EEG captures a spatially smoothed version of the LFPs but 
suffers from poor spatial resolution due to volume conduction and the distorting effects of the skull, resulting in filtering and 
mixing of neural source signals. This limits its utility for precisely localizing the origins of beta bursts. Nonetheless, EEG is 
ideal for tracking the timing and rate of beta bursts across trials, especially in infants and young children.

Magnetoencephalography. Magnetoencephalography (MEG) detects the changes in magnetic fields produced by neural electrical 
activity by using superconducting sensors. It provides similarly high temporal resolution as EEG but superior spatial resolution 
because magnetic fields are much less distorted by the surrounding tissue. This makes MEG particularly valuable for studying 
the spatial dynamics of beta bursts and for linking them to circuit-level models of cortical function. Although traditional 
cryogenic MEG systems are less suitable for certain populations (eg, infants, individuals with movement disorders), the 
development of wearable optically pumped magnetometers offers a promising solution. Optically pumped magnetometer–
based MEG has already been successfully deployed in newborns and children, and its wider adoption will provide a noninvasive 
means to explore burst dynamics more thoroughly across the life span.

Figure 1.  From oscillations to bursts: aperiodic vs periodic activity, burst waveforms, and trial-level dynamics. (a) Canonical 
power spectral density (PSD) shows periodic components (theta, alpha, beta, gamma) and aperiodic 1/f activity. Beta power 
appears as a broad peak superimposed on the aperiodic slope. (b) Simulated beta burst waveform generated by summing narrow 
and broad Gaussian components, approximating temporally aligned synaptic inputs to different cortical layers. Inset shows the 
corresponding time–frequency (TF) representation, revealing a brief, spectrally constrained beta burst. (c) Simulated single-trial 
time series (left) and corresponding TF decompositions (right), each containing transient beta bursts embedded in pink noise. 
The precise timing of bursts vary across trials. (d) Averaging across trials in the time domain (left) abolishes the transient burst 
structure, while averaging in the TF domain (right) retains elevated beta power. This illustrates how trial-averaged TF metrics can 
misrepresent beta bursts as sustained induced oscillatory activity.
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sustained oscillations (Feingold et al 2015; Sherman et al 
2016; Little et al 2019). This insight has prompted a shift 
in the field, with burst-based analysis increasingly 
becoming the standard framework for analyzing beta 
band activity from multiple cortical networks, especially 
the sensorimotor system. Yet until recently, beta bursts 
have been considered homogeneous events and analyzed 
primarily through time–frequency methods that focus on 
spectral power, duration, and frequency span. However, 
because beta bursts are fundamentally transient and non-
oscillatory events, we argue that they are best viewed in 
the time domain through their waveforms. Time domain 
analyses reveal significant diversity in burst shapes and 
rate dynamics, suggesting that individual bursts may rep-
resent distinct computational events reflecting various 
underlying neural processes.

In this article, we review the current literature con-
cerning sensorimotor beta burst properties, dynamics, 
hypothesized functions, and development. We focus on 
the sensorimotor system because it is the most exten-
sively studied in the context of beta bursts, but our goal 
is to develop a broader framework for understanding 
cortical beta bursts more generally. We propose that beta 
bursts are not homogeneous phenomena but instead are 
distinct “fingerprints” reflecting specific combinations 
of synaptic inputs from different regions targeting dif-
ferent layers of the cortex. This perspective emphasizes 
the computational significance of burst waveform 
shapes, which we argue index the spatial and temporal 
patterning of convergent inputs and provide a window 
onto the circuit-level operations occurring at a given 
moment. While we draw primarily on findings from the 
sensorimotor system, we suggest that this framework 
can be extended to beta bursts observed in other cortical 
regions. Finally, we discuss how this refined perspective 
can advance our understanding of the functional signifi-
cance of beta bursts, and we outline important avenues 
for future research.

Bursts of Activity in the Beta Band

Discovery

The beta frequency band has long been associated with 
sensorimotor processes, and systematic changes in beta 
amplitude, such as event-related desynchronization and 
synchronization, are typically observed before, during, 
and after movement in trial-averaged analyses 
(Pfurtscheller 1981; Pfurtscheller and Lopes da Silva 
1999; Cassim et al 2000; Jurkiewicz et al 2006). However, 
the notion that cortical beta activity manifests as transient 
bursts rather than sustained oscillations has a long but 
largely overlooked history. To our knowledge, the earliest 
known description of beta bursts comes from Kamp et al 
(1972), who reported transient beta events in intracranial 

recordings from the human frontal cortex and even pre-
sented examples of burst waveforms. Despite this early 
observation, their work received little attention and was 
rarely cited in subsequent literature. More prominent 
physiological investigations of transient beta activity 
emerged in the 1990s, notably through the work of 
Murthy and Fetz (1992, 1996), who described brief 
coherent beta activity in the sensorimotor cortex of 
behaving monkeys. Yet, it was only in the past decade 
that the concept of beta bursts gained widespread trac-
tion, largely due to influential contributions by Stephanie 
Jones and colleagues, who combined human MEG 
recordings, computational modeling, and animal data to 
formalize a mechanistic model of burst generation (Jones 
2016; Sherman et al 2016), offering a cross-scale frame-
work that links cellular-level synaptic dynamics with 
macroscale patterns observed in noninvasive recordings.

Recent animal and human research has reinforced this 
burst-centric perspective of beta band activity, demon-
strating that the slow, sustained patterns of beta amplitude 
typically observed in trial-averaged data do not accu-
rately reflect the underlying trial-by-trial dynamics of 
cortical activity (Sherman et al 2016; Little et al 2019). 
Instead, beta activity in sensorimotor regions manifests 
as discrete focal bursts, characterized by stereotyped, 
wavelet-like shapes in the time domain (Figure 1b; 
Sherman et  al 2016; Little et  al 2019; Bonaiuto et  al 
2021). The recognition of beta bursts as transient and 
focal events challenges previous assumptions of beta 
activity as fundamentally oscillatory, highlighting the 
limitations of aggregating data across trials without con-
sideration for the nature of the underlying neural activity 
(Figure 1c and 1d; Jones 2016).

From Homogeneity to Diversity in 
Sensorimotor Beta Bursts

Early research on sensorimotor beta bursts largely treated 
them as homogenous phenomena, with analyses focused 
on overall burst rates, durations, and their timing relative 
to behavioral events (Shin et al 2017; Little et al 2019; 
Wessel 2020). These studies have produced variable find-
ings. For example, Wessel (2020) found a larger fronto-
central beta burst rate for successful vs failed action 
stopping, whereas Jana et al (2020) did not find a signifi-
cant difference. These discrepancies could be partly due 
to methodological differences in burst detection methods 
(Box 2). This variability also underscores the limitations 
inherent in treating beta bursts uniformly without consid-
ering their diversity.

Subsequent studies started to highlight significant het-
erogeneity in beta bursts, emphasizing diversity in their 
time–frequency domain features, such as power, peak fre-
quency, duration, and frequency span (Duchet et al 2020; 
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Enz et al 2021; Szul et al 2023; West et al 2023; Zich et al 
2023). However, the use of these time- and frequency-
based characteristics likely persists from the traditional 
assumption that beta activity fundamentally reflects 
oscillatory processes. Consequently, this approach has 
limitations in fully capturing the transient nonoscillatory 
nature of beta bursts and in linking empirical observa-
tions to specific neural mechanisms.

More recently, investigations have shifted toward 
examining the waveform shapes of individual beta bursts 
in the temporal domain (Figure 2; Karvat et  al 2020; 
Kosciessa et al 2020; Rayson et al 2023; Szul et al 2023). 
This approach better aligns with biophysical models that 
explicitly describe burst generation as resulting from the 
confluence of temporally aligned synaptic inputs across 
different cortical layers (Sherman et  al 2016; Bonaiuto 
et  al 2021). Importantly, individual burst waveforms 
exhibit substantial diversity along a continuum, rather 
than forming discrete clusters. Analytical methods such 
as principal component analysis (PCA; Rayson et  al 
2023; Szul et al 2023) and convolutional dictionary learn-
ing (Power et al 2023) have been employed to character-
ize these bursts in terms of waveform patterns or motifs 
(Figure 2a and 2b). Bursts with varying waveforms within 

these motifs are differentially rate modulated before, dur-
ing, and after real and imagined movement (Figure 2g 
and 2h), suggesting distinct computational roles in senso-
rimotor processes (Rayson et  al 2023; Szul et  al 2023; 
Papadopoulos et al 2024a, 2024b). However, the precise 
functional significance of these waveform shapes and 
their underlying computational processes remain critical 
open questions.

Potential Computational Roles for 
Cortical Beta Bursts: Insights from 
the Sensorimotor System

Sensorimotor beta activity has long been proposed to 
serve multiple critical functions in motor control and sen-
sorimotor integration. Early theories, based on trial-aver-
aged oscillatory amplitude, linked beta to the maintenance 
of the sensorimotor state (Engel and Fries 2010), the inhi-
bition of motor output (Salmelin et al 1995; Zhang et al 
2008), the gating of sensory input (Buchholz et al 2014), 
top-down control (Buschman and Miller 2007; Siegel 
et al 2012), and sensory feedback processing (Lalo et al 
2007). More recent studies, focusing on transient beta 
bursts, have shown that bursts tend to track changes in 

Figure 2.  Beta bursts exhibit diverse waveform shapes that are not captured by standard time–frequency features and show 
distinct temporal dynamics. (a) Sample empirical beta burst waveforms from the tails of a principal component obtained from 
principal component analysis (PCA) on electroencephalography burst waveforms illustrate continuous shape variability. (b) 
Average empirical waveforms from low and high bins along a single principal component (PC2, explaining 21.67% of waveform 
variance) demonstrate consistent shape differences. (c–f) Two-dimensional histograms (the color indicates burst density) show 
that variation along this PCA axis is not well explained by conventional time–frequency features (peak frequency, frequency span, 
duration, or amplitude). (g) Simulated data from a toy model illustrates how bursts with different waveform shapes (colors) can 
vary in their rate relative to movement offset (time 0). (h) Corresponding baseline-corrected rate profiles show that different 
waveform types can be differentially modulated by task events. These differences would be obscured if bursts were treated as 
homogeneous events without accounting for shape. 
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beta power: increasing in rate prior to voluntary move-
ment, decreasing during motor execution, and rebound-
ing postmovement, but their precise timing is more 
predictive of response time and error than either beta 
power or burst rate (Little et al 2019). Beta bursts have 
been associated with increased cortico- and intermuscu-
lar coherence during static posture holding, suggesting a 
role in coordinating functional muscle groups during 
motor tasks (Simpson et al 2024). Additionally, premove-
ment beta bursts have been shown to predict trial-by-trial 
motor performance, pointing to their involvement in the 
anticipatory modulation of movement based on previous 
outcomes (Bracco et  al 2025). In pathologic contexts 
such as Parkinson disease, prolonged beta bursts are asso-
ciated with bradykinesia and rigidity, implicating altered 
burst dynamics in disrupted motor control (Tinkhauser 
et al 2017; Cagnan et al 2019; Lofredi et al 2019). These 
observations suggest that beta bursts are closely tied to 
behaviorally relevant computations, but exactly which 
computations remains an open question.

While many of these proposed functions assume a uni-
tary role for beta bursts, accumulating evidence of their 
diversity challenges this view. An emerging theoretical 
perspective suggests that beta bursts represent transient 
computational building blocks involved in different sen-
sorimotor and cognitive operations (Spitzer and Haegens 
2017; Lundqvist et al 2024). Spitzer and Haegens (2017) 
suggested that beta activity and therefore potentially beta 
bursts reflect the reactivation of specific neuronal ensem-
bles that support top-down executive control by selec-
tively reengaging relevant representations. In contrast, 
Lundqvist et al (2024) proposed that beta bursts imple-
ment transient, spatially patterned functional inhibition, 
supporting cognition through the coordination of task-
relevant excitability across neural populations. These 
spatiotemporal burst patterns are thought to underlie flex-
ible cognitive operations, including working memory, 
attention, and executive control.

We extend these perspectives by proposing that beta 
bursts reflect transient patterns of synaptic input arising 
from coordinated interactions between cortical and sub-
cortical sources. This proposal builds on the biophysical 
modeling framework developed by Jones and colleagues 
(Sherman et  al 2016) and supported by empirical MEG 
data (Bonaiuto et al 2021). These studies suggest that beta 
bursts in the sensorimotor cortex arise from temporally 
aligned synaptic inputs originating from distinct thalamic 
sources: broad proximal inputs targeting basal dendrites 
of pyramidal cells in superficial and deep layers thought to 
arise from lemniscal thalamic nuclei, combined with 
stronger and more temporally narrow distal inputs target-
ing apical dendrites in superficial layers. Within this 
model, the characteristic beta burst waveform arises when 
a broad (~100 ms) proximal synaptic input drives current 

flow up the dendrites and is interrupted by a shorter (~50 
ms) stronger distal input targeting apical dendrites of layer 
2/3 and layer 5 pyramidal neurons, pushing current flow 
downward to create the stereotypical trough of the beta 
burst waveform. Although subthreshold, these inputs can 
recruit layer 2 interneurons, which provide prolonged 
GABAb-mediated inhibition onto pyramidal cells (Law 
et al 2022), thereby modulating cortical excitability.

Given the motor cortex’s extensive and diverse afferent 
connectivity, including inputs from cerebellar- and basal 
ganglia–recipient thalamic nuclei, as well as dense corti-
cocortical projections (Shipp 2005, 2007), we hypothesize 
that the observed diversity of beta burst waveform shapes 
in the motor cortex may reflect the integration of multiple, 
functionally distinct input configurations. From this per-
spective, individual beta bursts are not merely generic 
inhibitory signals but rather could serve as distinct finger-
prints of specific circuit-level computations, if future 
work confirms consistent mapping between waveform 
shape and input configuration. For example, some bursts 
may reflect reactivation of internal models, while others 
implement transient inhibitory gating or error processing 
(Moreau et al 2025) or initiate sensorimotor transforma-
tions. Thus, different beta burst waveforms may index dis-
tinct computational primitives, arising from unique 
patterns of laminar input that reflect the connectivity and 
functional demands of the sensorimotor cortex.

Alternative Mechanisms of Burst Generation

Alternative models propose that beta bursts can be gener-
ated purely through intracortical interactions between 
excitatory and inhibitory neurons modulated by intrinsic 
membrane currents, such as the M current (Jensen et  al 
2005), or via thalamic inputs that drive spiking and oscilla-
tory dynamics within local excitatory–inhibitory networks 
(Mirzaei et al 2017). These alternative mechanisms remain 
valuable considerations in addressing burst diversity in the 
beta and other frequency bands (Schmidt et al 2023).

Beta Bursts and Development

Understanding how beta bursts develop offers a unique 
opportunity to disentangle their underlying neural mech-
anisms and computational roles. The first year of life is a 
period of heightened brain plasticity, marked by dramatic 
changes in sensorimotor skill (Adolph and Franchak 
2017; von Hofsten and Rosander 2018). Therefore, early 
infancy represents a particularly ideal point in develop-
ment to examine how beta bursts change alongside func-
tional and anatomic maturation in different neural circuits 
and how this relates to behavior.

Despite the theoretical promise of this approach, 
research on sensorimotor beta band activity in early 
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development remains sparse (Cuevas et al 2014; Perone 
and Gartstein 2019). Existing infant studies have focused 
on spectral power changes during action observation and/
or execution (van Elk et al 2008; Meyer et al 2011) and 
commonly use an adult-defined frequency band for anal-
ysis (eg, Samson-Dollfus et al 1983; Niemarkt et al 2011). 
The latter is problematic given well-documented devel-
opmental shifts in beta peak frequency in later childhood 
(Johnson et al 2019; Trevarrow et al 2019), recently demon-
strated beta shifts in infants and young children (Figure 3a; 
Rayson et al 2022, 2023; Wilkinson et al 2024), and the 
frequency shifts long known to occur in the alpha band 
across early development (Marshall et al 2002).

However, recent research on infant beta bursts has 
now begun to fill this gap. Using electroencephalography, 
Rayson et al (2022) showed that, as in adults, sensorimo-
tor beta activity in 12-mo-old infants occurs in discrete 
bursts rather than sustained oscillations. As compared 

with adults, infant bursts had lower peak frequencies and 
higher amplitudes. While they lasted longer in absolute 
time, they were shorter in terms of cycles, indicating 
potential differences in the temporal structure of generat-
ing mechanisms. Importantly, overall beta burst rate 
decreased during grasp execution in adults but not in 
infants, suggesting that task-related modulation of burst 
rate emerges with development.

Building on this work, Rayson et al (2023) extended 
the analysis to 9-mo-old infants and introduced a detailed 
waveform shape analysis using PCA, adapting methods 
developed for adult data (Szul et al 2023). Bursts from all 
age groups had a similar median waveform shape, but 
infant bursts were longer in duration and had a lower 
peak frequency. Burst waveforms from each age group 
were aligned to a common time course by dynamic time 
warping (Figure 3b) and characterized along multiple 
principal components reflecting continuous variability in 

Figure 3.  Developmental changes in beta burst shape and modulation. (a) Alpha and beta peak frequencies increase from 
infancy to adulthood. (b) Infant beta bursts have the same mean waveform shape as adult bursts but stretched in time. Dashed 
lines indicate correspondences revealed by dynamic time warping. (c) Toy examples of burst rate modulation in contralateral 
and ipsilateral sensorimotor regions show how 2 burst types (colors) change from broadly overlapping and weakly modulated in 
infancy to more distinct, lateralized, and selectively modulated in adulthood. These developmental shifts support the hypothesis 
that beta burst waveform shapes reflect functionally specific input patterns that mature over time. Notably, the postmovement 
beta rebound—robust in adults—is attenuated or absent in infancy and only gradually emerges across childhood and adolescence, 
potentially reflecting the late maturation of thalamocortical and cortico-subcortical circuits (Gaetz et al 2010; Johnson et al 2019; 
Trevarrow et al 2019).
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shape. Only bursts with specific shapes that markedly dif-
fered from the median were changed in rate during move-
ment, and this effect became earlier, more pronounced, 
and more lateralized with age (Figure 3c).

These beta burst findings in infants indicate that specific 
features of their development, such as waveform shape, lat-
eralization, and movement-related rate changes, may fol-
low the known maturational trajectories of underlying 
sensorimotor brain networks (Erberich et  al 2006; Xiao 
et al 2018). They also support the idea that developmental 
studies can now serve as a powerful tool to test competing 
hypotheses about beta burst function. For example, such 
studies will be valuable for addressing questions about 1) 
whether distinct waveform shapes reflect distinct computa-
tional roles via examination of how changes in different 
types of beta burst predict motor skill improvement or 2) if 
burst properties are shaped by thalamocortical vs 

corticocortical inputs with diffusion-weighted magnetic 
resonance imaging to track how changes in brain connec-
tivity predict changes in bursts features.

A New Framework for 
Understanding Beta Burst Dynamics

Clearly, previous research demonstrates the importance 
of acknowledging the bursty vs oscillatory nature of 
sensorimotor beta activity and the potential for research 
on beta bursts to reveal important insights into senso-
rimotor processes. However, what is also clear is that so 
far we know very little about the function of different 
types of beta bursts or the type of low- vs high-level 
processes that they reflect. Therefore, we propose an 
expanded theoretical framework (Figure 4) that recon-
ceptualizes sensorimotor beta bursts as dynamic 

Figure 4.  Proposed neural circuits involved in generating diverse beta burst waveforms in sensorimotor cortex. Different 
beta burst waveforms (illustrated schematically in cyan and magenta) may reflect distinct spatiotemporal patterns of synaptic 
input from cortical and subcortical regions targeting specific cortical laminae. These inputs arise from multiple sources, including 
corticocortical projections from the somatosensory (S1) and premotor cortex as well as the supplementary motor area (SMA); 
thalamocortical projections from the ventromedial (VM), ventral anterior (VA), and ventrolateral (VL) thalamic nuclei; and 
subcortical circuits involving the basal ganglia (striatum, external globus pallidus (GPe), internal globus pallidus (GPi), subthalamic 
nucleus (STN), substantia nigra pars reticulata (SNr)) and the cerebellum. The thalamic reticular nucleus (TRN) modulates 
thalamocortical transmission. Through convergent and recurrent interactions across these pathways, the motor cortex 
integrates distinct afferent signals across laminae, potentially giving rise to the diverse beta burst waveform shapes observed in 
electrophysiologic recordings.
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computational events arising from the coordinated 
interplay of temporally aligned synaptic inputs across 
cortical microcircuits. We propose that beta burst wave-
forms provide a fingerprint of the spatiotemporal pat-
tern of inputs and thus index particular underlying 
computational processes. This framework builds on the 
foundational model developed by Jones and colleagues 
(Sherman et  al 2016) while incorporating recent evi-
dence on burst diversity, laminar organization of corti-
cal afferents, and developmental trajectories.

Circuit Mechanisms of Beta Burst Waveform 
Diversity

In the somatosensory cortex, biophysical modeling and 
empirical MEG data suggest that beta bursts arise from 
temporally aligned thalamocortical input patterns target-
ing different cortical layers (Sherman et al 2016; Bonaiuto 
et al 2021; Law et al 2022). We propose that beta bursts 
can also result from coordinated reciprocal interactions 
between cortical and subcortical regions, particularly in 
motor and associative areas where cortico-subcortical 
loops may influence their timing, amplitude, and wave-
form characteristics.

The motor cortex, due to its central role in motor con-
trol and learning, receives diverse inputs from frontal, 
premotor, somatosensory, basal ganglia, and cerebellar 
regions. These inputs differ in their laminar and dendritic 
targets (Hooks 2017; Geng et  al 2022; Koster and 
Sherman 2024). Corticocortical projections from somato-
sensory cortex (originating in layer 5) primarily target 
upper layers (layer 2/3 and layer 5A), while inputs from 
frontal areas predominantly project to deeper layers 
(Hooks et al 2013; Hooks 2017). Additionally, motor cor-
tex layer 5 pyramidal cells project extensively to subcor-
tical targets, including the thalamus, brainstem, and 
spinal cord (Weiler et al 2008).

These diverse afferent connectivity patterns suggest 
that beta burst waveforms in the motor cortex may reflect 
the integration of multiple, functionally specific input 
configurations (Geng et  al 2022). Several interacting 
loops may contribute to this diversity. The motor cortex 
forms reciprocal connections with the thalamus through 
cortico-thalamo-cortical loops, characterized by lamina-
specific input–output organization (Shepherd and 
Yamawaki 2021). It also sends outputs to the subthalamic 
nucleus (STN) via the hyperdirect pathway and indirectly 
via basal ganglia circuits. The reciprocal loop between 
the globus pallidus externus and STN has been proposed 
to propagate beta bursts within basal ganglia networks 
(Mirzaei et  al 2017). Shared thalamic inputs to cortical 
and basal ganglia regions may facilitate coordinated com-
munication between these structures (Kuramoto et  al 
2009). While STN bursts have been observed to precede 

thalamic bursts during action suppression, the direction-
ality between cortical and STN bursts remains unclear, 
with evidence for cortical- and STN-leading dynamics 
(Diesburg et al 2021). Cerebellar inputs further converge 
with basal ganglia outputs onto overlapping thalamic 
nuclei, providing additional integrative pathways (Koster 
and Sherman 2024). Peripheral waveform features in beta 
bursts may thus reflect the engagement of these modula-
tory cortical and subcortical loops.

We propose that different beta burst waveform shapes 
represent distinct underlying circuit-level computations, 
reflecting diverse combinations of cortical and subcorti-
cal inputs. Examining burst waveform shapes, particu-
larly their temporal domain features such as sharpness 
and nonsinusoidality, may help differentiate bursts with 
different functional origins and roles. Increased wave-
form sharpness, for example, has been linked to patho-
logic states such as Parkinson disease (Cole et al 2017) 
and used to characterize the subthalamic burst termina-
tion (Yeh et al 2020).

While this discussion has focused primarily on the 
motor cortex due to its rich cortico-subcortical connectiv-
ity and functional relevance, we suggest that this frame-
work may generalize to other cortical regions exhibiting 
burst-like beta activity. In prefrontal and frontal cortices, 
beta bursts have been linked to cognitive control and 
working memory (Rodriguez-Larios and Haegens 2023; 
Lundqvist et al 2024), including the suppression of task-
irrelevant information (Lundqvist et  al 2016; Lundqvist 
et al 2018), the active clearance of working memory con-
tents (Lundqvist et al 2018), and the detection of salient or 
unexpected stimuli (Tatz et al 2023). Frontal beta bursts 
also support response inhibition, with frontal beta bursts 
predicting successful stopping in stop signal tasks (Wessel 
2020; Muralidharan et al 2022). Importantly, recent work 
has shown that such bursts are embedded in larger cortico-
striato-thalamo-cortical loops, suggesting that the under-
lying mechanistic architecture may be conserved across 
domains (Liljefors et al 2024). While the applicability of 
this framework to temporal, parietal, and visual cortices 
remains less clear, given differences in local circuit motifs 
and subcortical projections (Sherman and Guillery 2011), 
task-modulated beta bursts are observed in parietal and 
visual cortex as well, particularly in the context of percep-
tual processing for working memory (Liljefors et al 2024). 
Whether these bursts reflect similar principles of input 
convergence or emerge via distinct circuit motifs remains 
an open and testable question.

The New Framework: Beta Burst Waveforms 
as Fingerprints of Cortical Computations

As described earlier, the model developed by Jones and 
colleagues (Sherman et al 2016) characterizes beta bursts 
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as events that emerge when strong, transient excitatory 
inputs to superficial cortical layers are temporally aligned 
with broader, weaker synaptic drives to deeper layers. 
Our expanded framework suggests that the observed 
diversity in beta burst waveforms, now well documented 
across multiple studies (Karvat et al 2020; Kosciessa et al 
2020; Power et  al 2023; Rayson et  al 2023; Szul et  al 
2023; Papadopoulos et al 2024a, 2024b), reflects diverse 
patterns of synaptic input that indicate distinct computa-
tional processes within cortical-subcortical networks.

This perspective represents a significant paradigm 
shift from traditional interpretations that viewed beta 
activity either as primarily inhibitory signals or as sus-
tained oscillatory rhythms. We propose instead that beta 
bursts are temporally precise integration events that 
reflect the convergence of heterogeneous neural inputs 
with distinct functional roles. Different waveform motifs 
serve as functional signatures, indicating the timing and 
composition of synaptic inputs from diverse cortical and 
subcortical sources. Biophysical modeling and high-pre-
cision MEG studies show that these inputs target specific 
cortical layers in distinct temporal patterns during burst 
generation (Sherman et  al 2016; Bonaiuto et  al 2021), 
with superficial layers predominantly active around the 
burst peak and deeper layers showing prominent activity 
at burst onset and offset. Importantly, different sources of 
synaptic input target distinct combinations of cortical lay-
ers, generating different spatial configurations of synap-
tic currents. These differences drive current flow in 
different directions within the cortical column, producing 
burst waveforms with distinct shapes that potentially 
reflect the laminar profile and temporal alignment of 
those inputs, although empirical validation is still needed. 
Finally, the framework extends beyond feedforward 
models of thalamocortical input to incorporate closed-
loop interactions between cortex and subcortical struc-
tures. In particular, basal ganglia–thalamocortical circuits 
form recurrent loops with motor cortex, where afferent 
and efferent projections influence burst dynamics. 
Computational evidence suggests that the precise timing 
and laminar targeting of cortical inputs can shape the 
resulting waveform (Szul et al 2023), supporting the idea 
that beta bursts reflect transient patterns of integration 
across distributed motor circuits.

Developmental and Clinical Implications

Our framework provides a mechanistic explanation for 
the developmental changes observed in beta burst char-
acteristics from infancy to adulthood (Rayson et al 2022, 
2023). The systematic modulation of specific waveform 
motifs during sensorimotor tasks across development 
suggests that beta bursts reflect the progressive matura-
tion of cortical networks involved in sensorimotor 

control. The transition from broad, bilateral, and weakly 
modulated bursts in infancy to more focal, lateralized, 
and selectively modulated bursts in adulthood likely mir-
rors the maturation of thalamocortical and corticocorti-
cal connectivity, tracking improvements in motor 
precision and interhemispheric specialization. These 
developmental changes in burst diversity and rate 
dynamics may also serve as sensitive biomarkers for 
neurodevelopmental and movement disorders. Moreover, 
burst-resolved decoding methods, particularly those that 
leverage waveform features, show promise for enhanc-
ing brain–computer interface performance by enabling 
more accurate and responsive decoding of motor imag-
ery (Papadopoulos et al 2024a, 2024b).

Testable Predictions

This expanded framework generates several testable 
predictions.

•• Manipulation of specific inputs to different corti-
cal layers should predictably alter beta burst wave-
form characteristics and associated motor 
behavior.

•• Disorders characterized by abnormal basal gan-
glia–thalamocortical signaling (eg, Parkinson dis-
ease) should show distinctive alterations in beta 
burst waveform diversity rather than simply 
changes in overall burst rate, duration, peak fre-
quency, or amplitude.

•• Targeted neuromodulation approaches that restore 
typical burst waveform diversity should more 
effectively improve motor function than those tar-
geting only burst rate, duration, peak frequency, or 
amplitude.

•• Developmental interventions focusing on normal-
izing specific beta burst types may enhance motor 
learning in children with movement disorders.

This reconceptualization of beta bursts as dynamic 
computational events resulting from the integration of 
diverse inputs provides a richer theoretical foundation for 
understanding their role in sensorimotor processing. By 
moving beyond simple oscillatory models and models 
that capture only the “average burst,” this framework 
offers deeper insights into how beta bursts may contrib-
ute to the coordination of complex motor behaviors and 
how their dysfunction may relate to neurologic and devel-
opmental disorders.

Challenges and Limitations

Inferring mechanistic drivers from beta burst waveforms 
remains an underdetermined inverse problem. Different 
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combinations of laminar and subcortical input can, in prin-
ciple, give rise to similar cumulative dipole moment 
dynamics, introducing degeneracy into the mapping 
between input pattern and waveform shape. While bio-
physical models provide a principled scaffold (Sherman 
et al 2016; Bonaiuto et al 2021; Law et al 2022), they do 
not yet resolve this ambiguity, particularly for regions with 
complex patterns of cortical and subcortical afferent input 
such as the motor cortex. However, recent advances in 
simulation-based inference offer a promising route toward 
resolving this degeneracy by enabling the estimation of 
posterior distributions over synaptic input parameters 
that give rise to observed waveforms, even in the absence 
of an explicit likelihood function (Tolley et al 2024).

Comprehensive theories of sensorimotor beta bursts 
must contend with the bilateral expression of sensorimotor 
beta activity. While task-related modulation is typically 
stronger contralaterally (Jurkiewicz et  al 2006), ipsilateral 
beta bursts are consistently observed and exhibit meaningful 
changes across development and task context (Rayson et al 
2023). These events may reflect distinct functional pro-
cesses, such as interhemispheric coordination or motor inhi-
bition, but they may also share underlying motif structure 
with contralateral events. It remains an open question 
whether specific beta burst waveform shapes are expressed 
independently across hemispheres or instead reflect coordi-
nated dynamics across a shared latent circuit. Resolving this 
ambiguity will require future studies to track beta burst 
motifs bilaterally.

While biophysical modeling suggests that beta bursts 
may cluster into discrete categories defined by specific 
patterns of synaptic input (Sherman et al 2016; Bonaiuto 
et al 2021; Law et al 2022), empirical analyses based on 
PCA often reveal continuous variation in waveform 
shapes (Rayson et al 2023; Szul et al 2023; Papadopoulos 
et  al 2024a). These continuous axes, however, are not 
without structure: thresholding along principal compo-
nent dimensions frequently reveals burst types with dis-
tinct rate dynamics and behavioral correlates. This pattern 
suggests a hybrid view in which burst motifs occupy 
identifiable regions of a continuous low-dimensional 
space, with within-motif variability reflecting graded dif-
ferences in input timing, amplitude, or convergence. PCA 
has proven effective for uncovering this structure, but its 
orthogonality constraints and emphasis on maximizing 
explained variance can bias the decomposition toward 
components ordered by dominant frequency content. As a 
result, components encoding mechanistically relevant 
features may not rank among those explaining the most 
variance. Alternative dimensionality reduction methods, 
such as variational autoencoders or generalized contras-
tive PCA (de Oliveira et  al 2025), may better capture 
latent structures shaped by circuit architecture. In addi-
tion, task-informed techniques, such as principal 

component regression (Bair et al 2006) or demixed PCA 
(Kobak et  al 2016), may improve interpretability by 
aligning components with functionally meaningful axes.

Conclusion and Future Directions

Beta activity is now widely recognized to occur in tran-
sient bursts rather than sustained oscillations. The next 
major challenge is to understand the functional diversity 
within these bursts. While most studies continue to treat 
beta bursts as homogeneous events defined by rate or 
power, growing evidence highlights rich variability in 
waveform shape, timing, and spatial distribution. We sug-
gest that these features reflect distinct circuit-level pro-
cesses and are not merely noise.

Our central proposal is that beta burst waveform 
shapes are mechanistically meaningful. They act as fin-
gerprints of temporally precise and spatially distributed 
patterns of synaptic input. This framework expands on 
earlier dual-input laminar models by suggesting that 
bursts with different shapes reflect distinct combinations 
of convergent cortical and subcortical signals. Beta bursts 
should therefore be viewed not as uniform events but as 
transient, functionally distinct episodes of integration 
across neural circuits.

Developmental evidence supports this perspective. 
The shift from broad, weakly modulated bursts in infancy 
to more focal, lateralized, and selectively rate-modulated 
bursts in adulthood parallels the maturation of thalamo-
cortical and corticocortical pathways. These changes sug-
gest that features of beta burst waveforms may follow 
neural circuit development and could serve as sensitive 
indicators of emerging motor specialization or atypical 
developmental trajectories. One potential mechanism 
underlying the increase in beta peak frequency over 
infancy and childhood (Johnson et  al 2019; Trevarrow 
et  al 2019; Rayson et  al 2022, 2023) is the increased 
myelination of thalamocortical projections during devel-
opment (Barkovich et al 1988). In the Jones model, beta 
bursts result from the summation of 2 distinct thalamic 
synaptic drives targeting different cortical layers, and the 
shape of the burst waveform reflects the width of the tem-
poral distribution of these inputs (Sherman et al 2016). As 
myelination increases, conduction delays become more 
uniform (Salami et  al 2003), reducing temporal disper-
sion and potentially producing sharper burst waveforms 
with higher peak frequencies.

Beta bursts have significant clinical and transla-
tional potential. In Parkinson disease, prolonged burst 
duration has been associated with motor impairment 
(Tinkhauser et al 2017), and it remains an open ques-
tion whether burst waveform shape is also altered. If 
so, this could reflect changes in the underlying input 
patterns or circuit architecture and guide more 
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fine-grained closed-loop stimulation or neurofeedback 
interventions. Moreover, recent studies have shown 
that decoding beta bursts based on waveform features 
improves performance in brain–computer interface 
systems as compared with traditional power-based 
methods (Papadopoulos et al 2024a, 2024b). This sug-
gests that targeting specific burst motifs, rather than 
simply suppressing or enhancing beta activity, may 
enable more precise and effective neuromodulation 
strategies. Pathologic burst shapes could first be iden-
tified offline by comparing medication on vs off states 
(Agouram et al 2025) and subsequently detected online 
by convolving the incoming signal with the target 
waveform (Papadopoulos et al 2024a), enabling rapid, 
shape-specific detection for use in closed-loop deep 
brain stimulation or neurofeedback paradigms.

We outline several priorities for future research that 
will be essential for validating, refining, and extending 
the proposed framework:

Methodological standardization: The field needs con-
sensus on burst detection algorithms and standardized 
benchmarks for evaluating them. In parallel, improved 
methods are needed for characterizing burst waveform 
shape in ways that map onto interpretable parameters 
of mechanistic models of burst generation. Methods 
should also enable linking waveform-specific burst 
dynamics to behavior, allowing for more direct testing 
of computational hypotheses.

Mechanistic integration across scales: Computational 
models, invasive recordings, and high-resolution 
imaging techniques such as laminar MEG (Bonaiuto 
et  al 2021) should be used to link specific burst 
motifs to their circuit-level origins. Invasive record-
ings can relate burst dynamics to neural spiking 
activity, providing the ground truth at a microcircuit 
level. Laminar MEG can resolve the spatial distribu-
tion and propagation of bursts across cortical layers 
and regions. Computational models are essential for 
bridging these methods, enabling inference about the 
synaptic and circuit mechanisms underlying burst 
waveform diversity.

Developmental and clinical translation: Longitudinal 
studies are needed to track how burst diversity evolves 
with motor development and underlying brain struc-
ture. Such studies can test whether changes in cortical 
and subcortical connectivity predict the emergence of 
specific burst waveform dynamics, which in turn pre-
dict improvements in motor skill. This approach offers 
a more causal test of how distinct projections contrib-
ute to burst generation and the functional roles of dif-
ferent burst types. In clinical populations, altered 
connectivity or circuit dysfunction may be reflected in 

abnormal burst waveform dynamics, providing mech-
anistic insight and targets for intervention.

Cross-region generalization: Future work should test 
whether burst waveform diversity supports special-
ized functions across different cortical regions, includ-
ing frontal, prefrontal, temporal, parietal, and visual 
areas (Lundqvist et  al 2016; Lundqvist et  al 2018; 
Wessel 2020; Muralidharan et  al 2022; Rodriguez-
Larios and Haegens 2023; Tatz et  al 2023; Liljefors 
et al 2024). A related direction involves examining, in 
the context of the proposed framework, the relation-
ship between cortical and peripheral beta bursts 
detected in motor units (Bräcklein et  al 2022; 
Abbagnano et al 2025). This could offer insights into 
how central and peripheral systems coordinate during 
motor control and how burst dynamics propagate 
across levels of the motor hierarchy.

In summary, sensorimotor beta bursts provide a trac-
table window onto dynamic neural computation and may 
serve as a prototype for understanding burst dynamics 
across other brain regions. We propose that their diver-
sity in waveform shape, timing, and spatial distribution 
reflects an underlying diversity of neural inputs and 
functional roles. By moving beyond averaged measures 
and toward mechanistic models grounded in burst diver-
sity, we can gain the tools to probe neural circuits with 
greater specificity, across development, disease, and 
intervention. Future research focusing on burst motifs, 
their propagation patterns, and cross-frequency interac-
tions will deepen our understanding of how beta activity 
supports behavior. Combining developmental, computa-
tional, and clinical approaches will enable not only theo-
retical advances but also the development of burst 
waveform-based biomarkers and interventions to 
improve health and function across the life span.
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